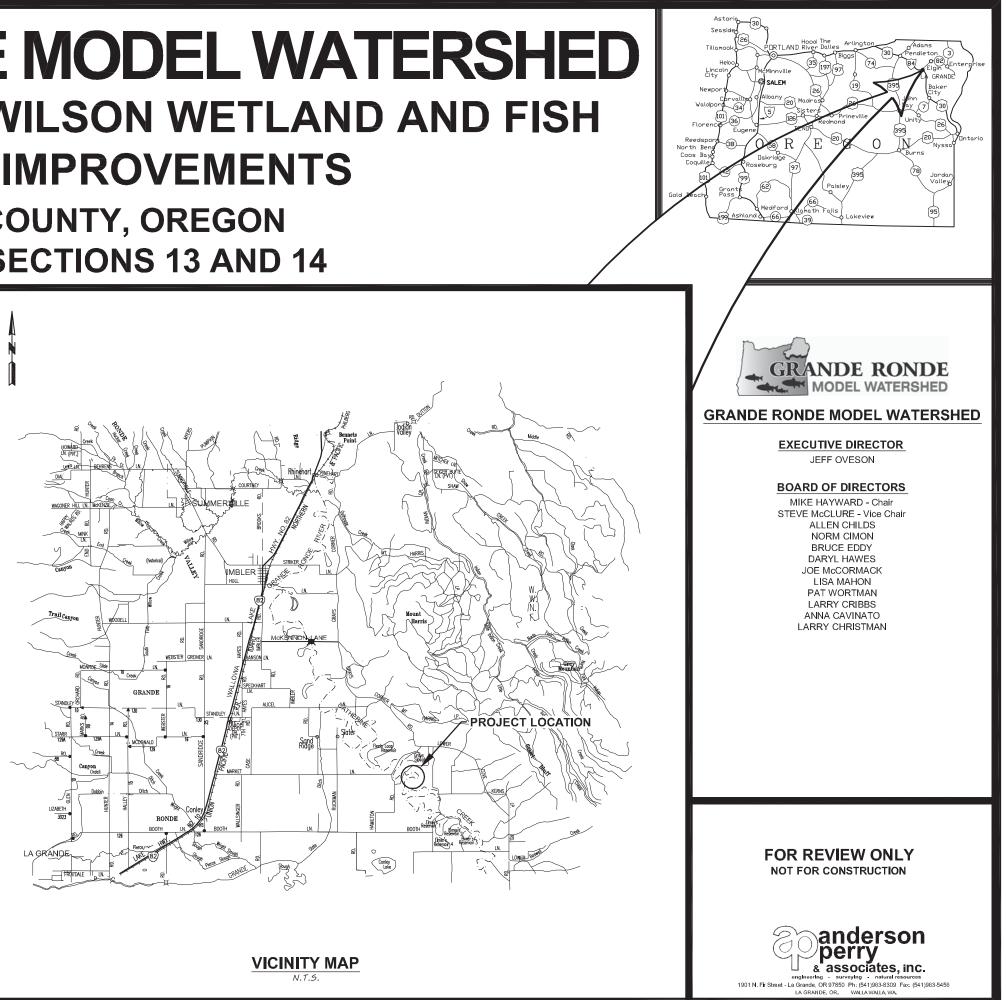
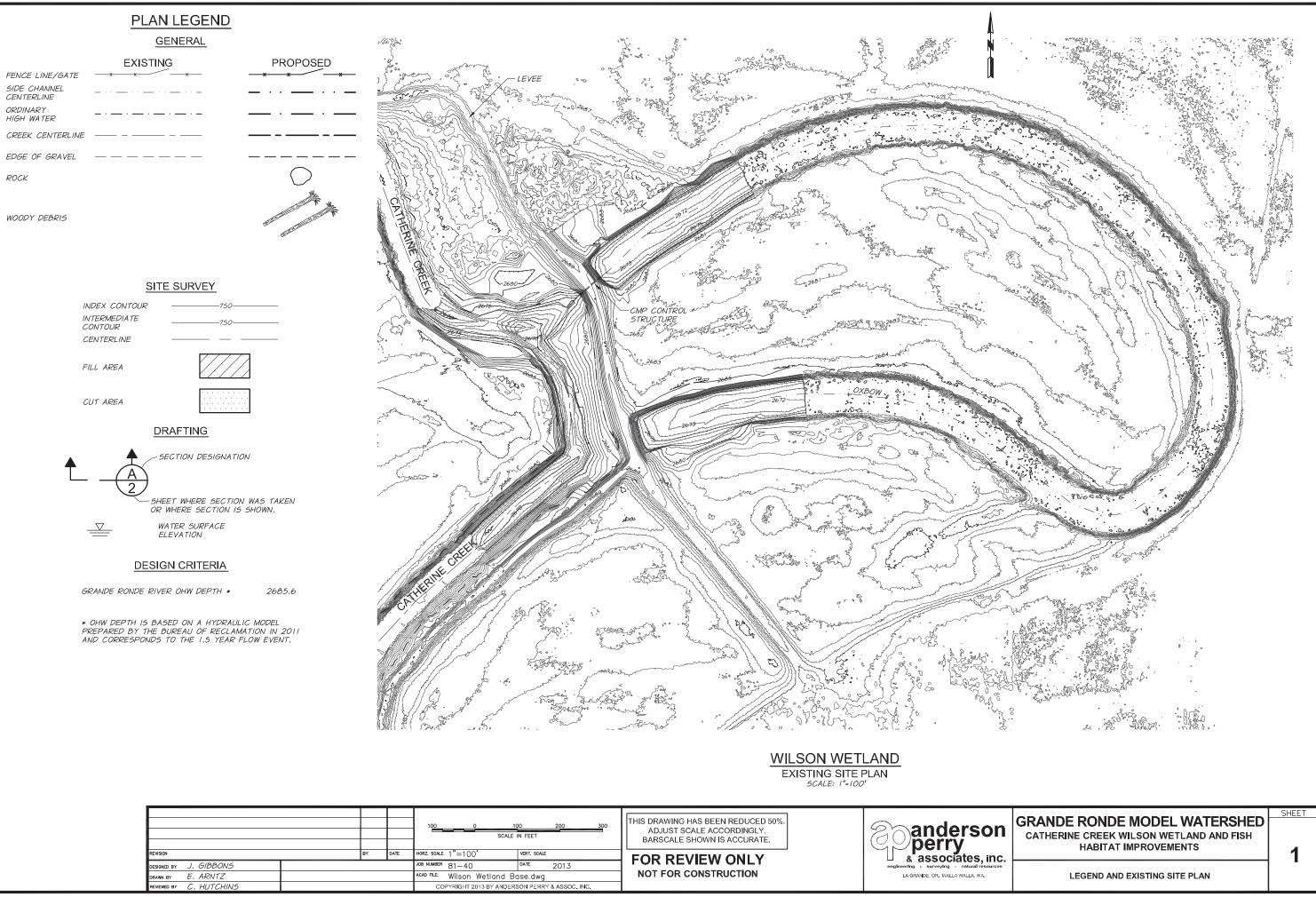
APPENDIX C

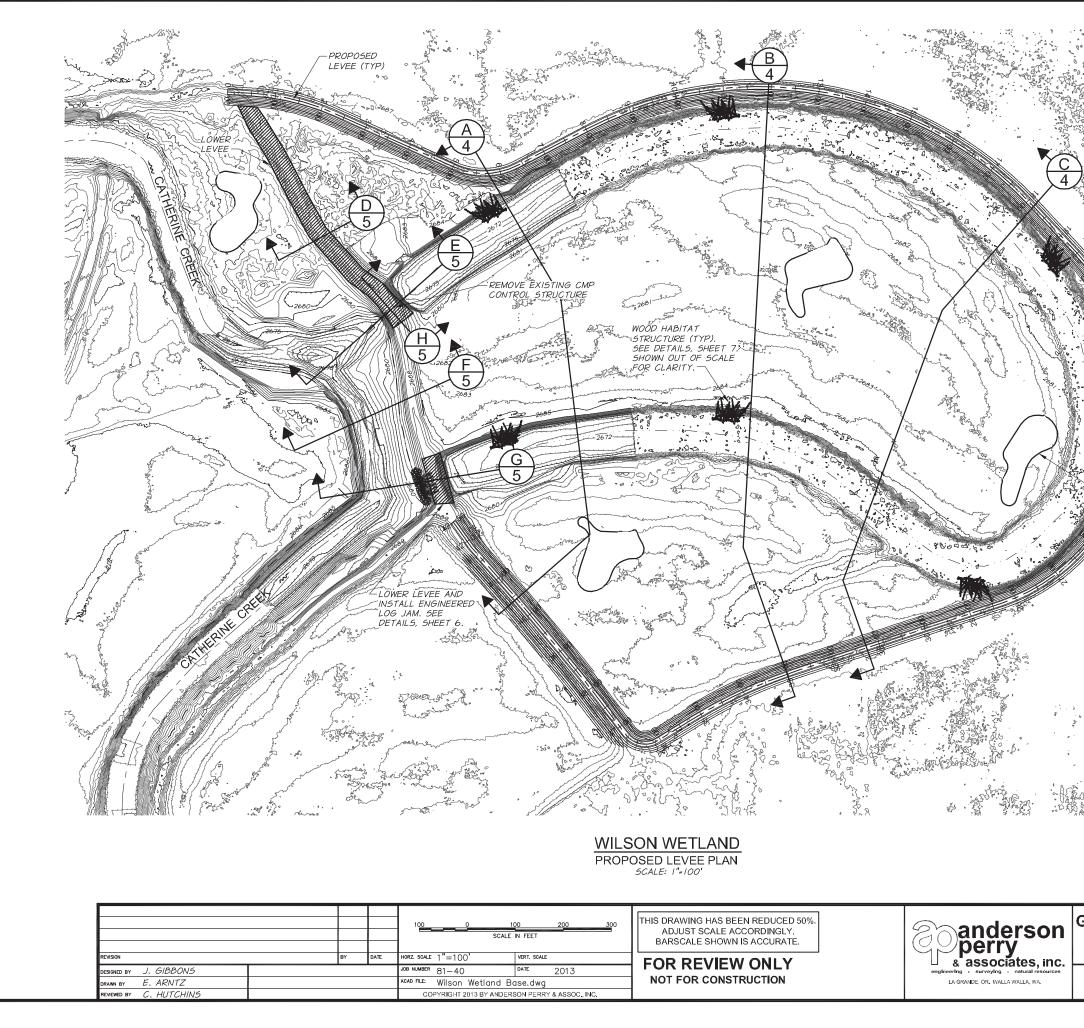

Selected Plan Sheets

GRANDE RONDE MODEL WATERSHED CATHERINE CREEK WILSON WETLAND AND FISH HABITAT IMPROVEMENTS

UNION COUNTY, OREGON T2S R39E SECTIONS 13 AND 14


INDEX

- COVER
- 1 LEGEND AND EXISTING SITE PLAN
- 2 PROPOSED LEVEE PLAN
- 3 LEVEE PROFILE
- 4 WETLAND MITIGATION AREA SECTIONS 1
- 5 WETLAND MITIGATION AREA SECTIONS II AND DETAILS
- 6 ENGINEERED LOG JAM DETAILS 7 WOOD HABITAT STRUCTURE DETAILS
- 8 TYPICAL PLANTING PLAN AND DETAILS



The Grande Ronde Model Watershed has reviewed these drawings and approved them for construction to fulfill the intended project objectives.

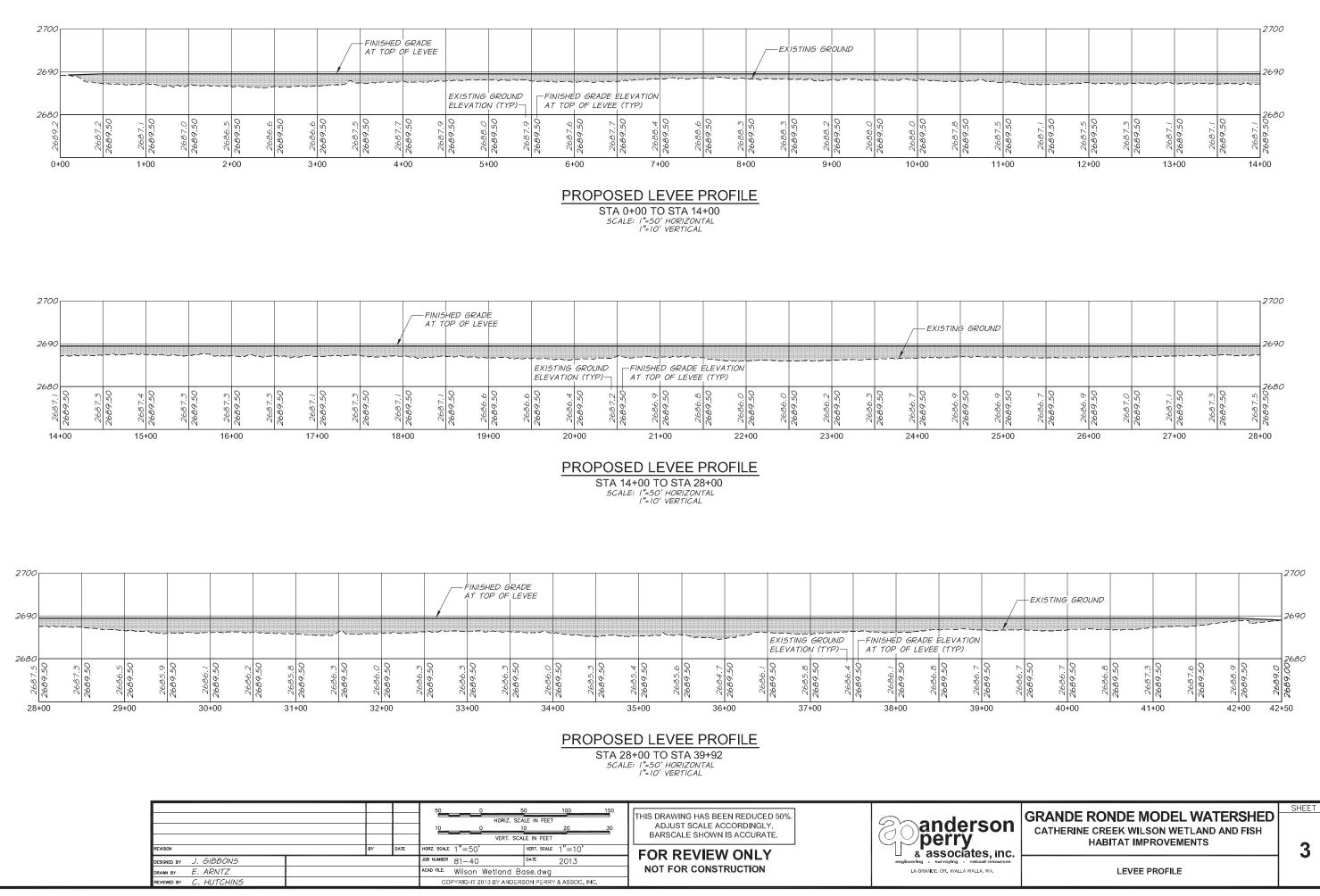
Date

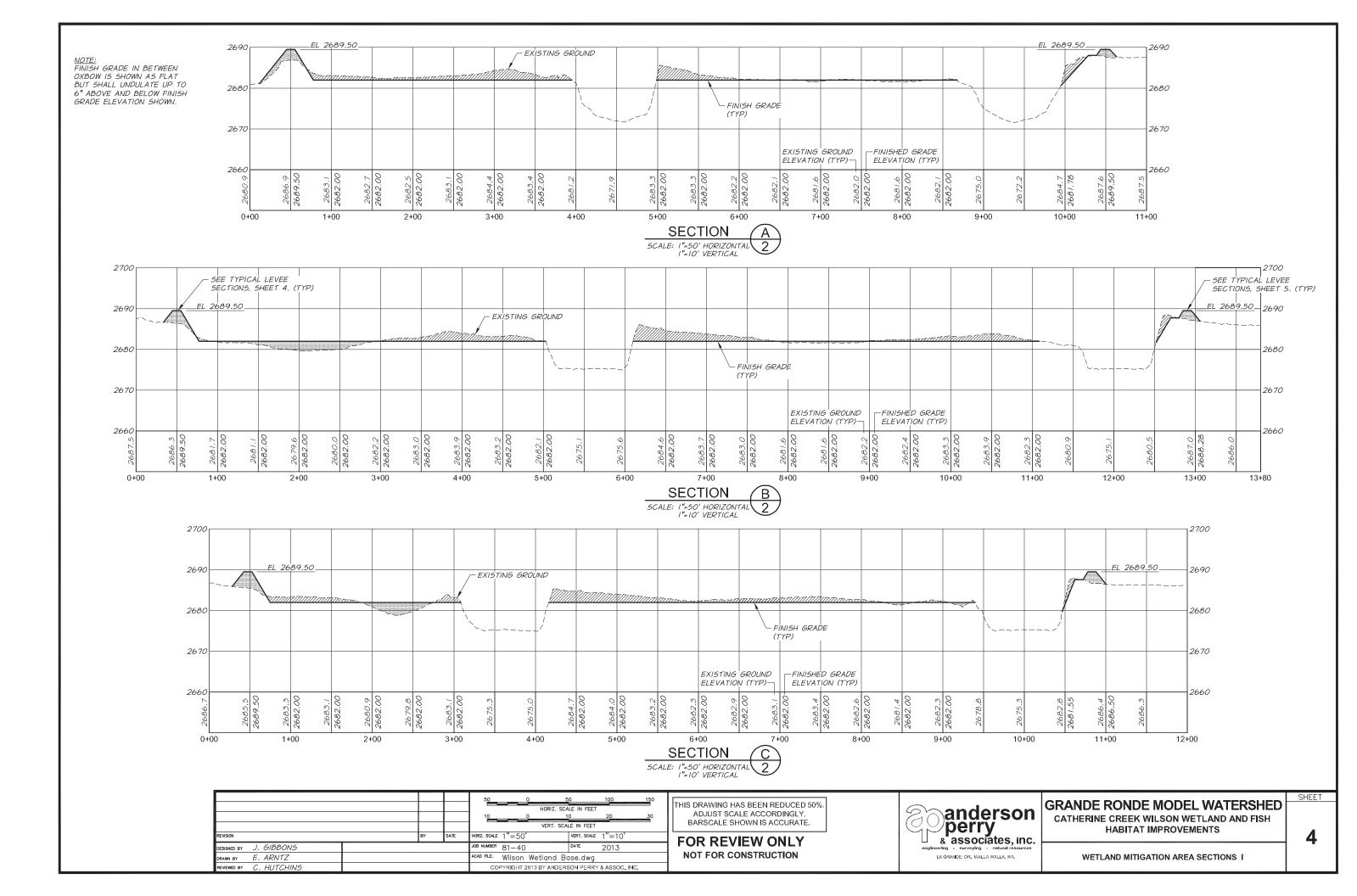
			10001 SCALE	00 200 300 IN FEET	THIS DRAWING HAS BEEN REDUCED 50%. ADJUST SCALE ACCORDINGLY. BARSCALE SHOWN IS ACCURATE.	Coan
REVISION	BY D	DATE	HORZ. SCALE 1"=100"	VERT. SCALE	FOR REVIEW ONLY	ass
DESIGNED BY J. GIBBONS			JOB NUMBER 81-40	DATE 2013		engineering sur
drawn by E. ARNTZ			ACAD FILE: Wilson Wetland B	ase.dwg	NOT FOR CONSTRUCTION	LA GRANDE, C
REVIEWED BY C. HUTCHINS			COPYRIGHT 2013 BY ANDER	SON PERRY & ASSOC., INC.	1	

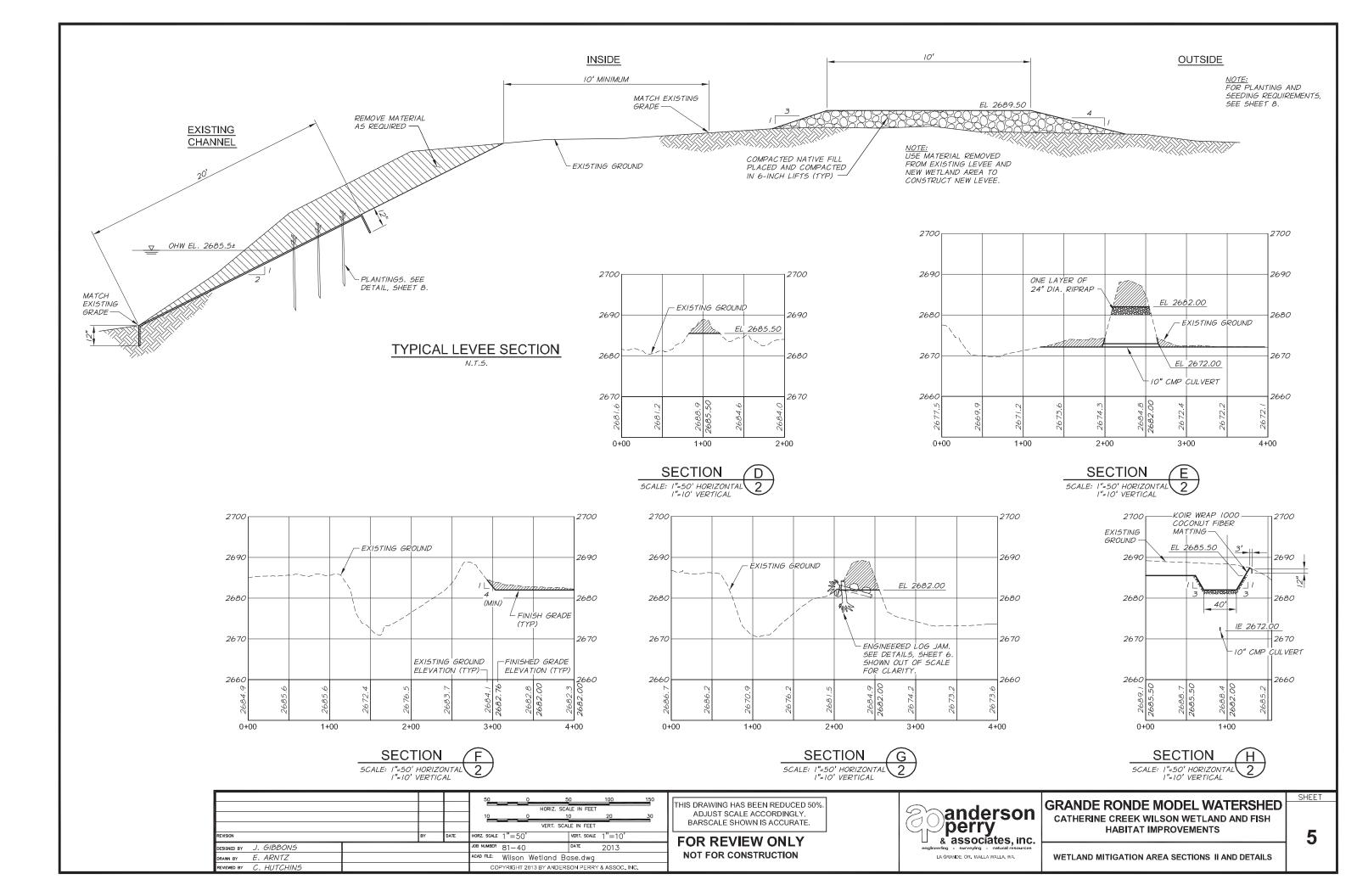
-RAISED AREAS FOR TYPE B WETLAND. SEE SHEET B FOR WETLAND DETAILS FG EL 2682.5 (TYP)

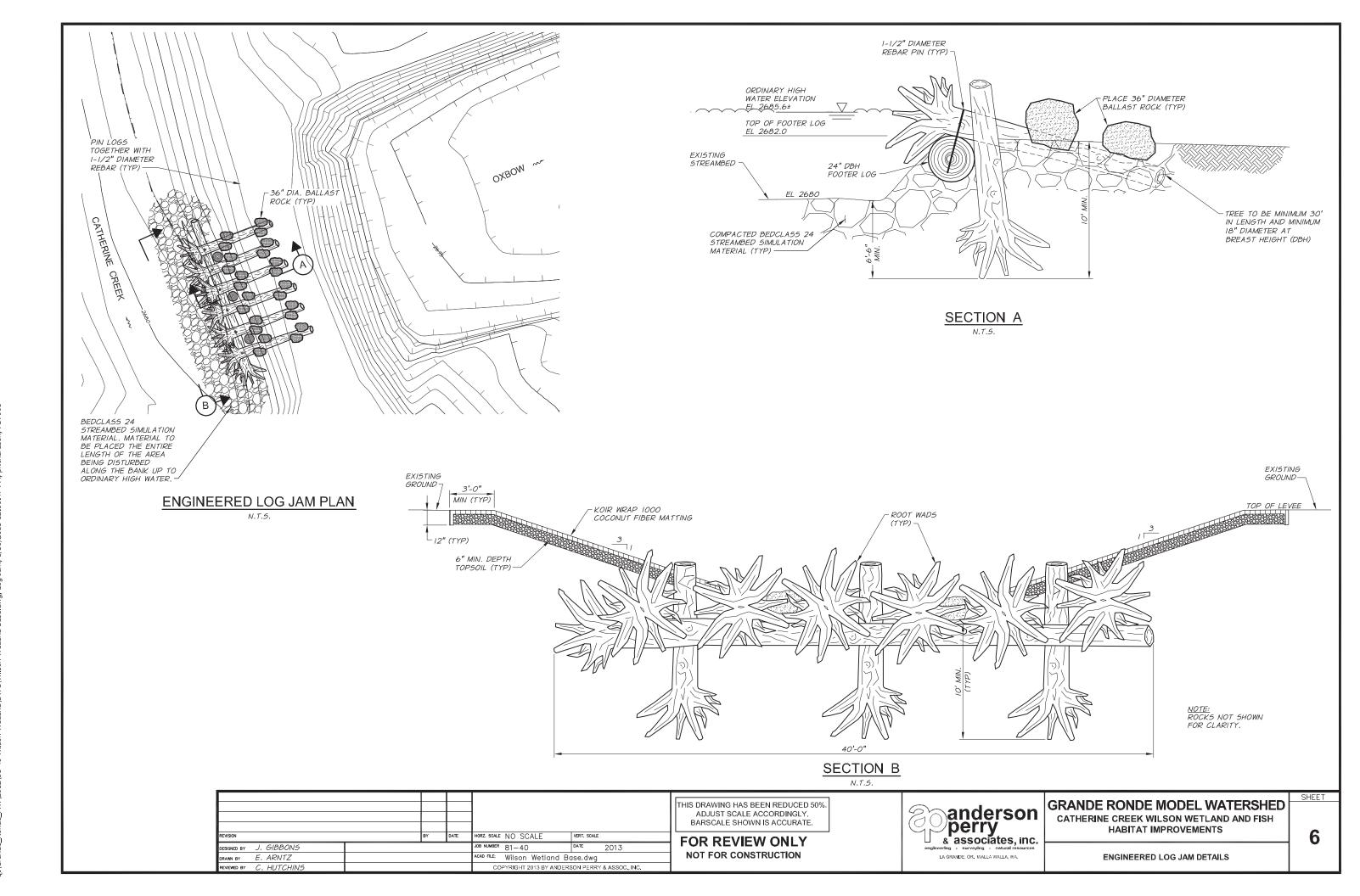
PROJECT OBJECTIVES:

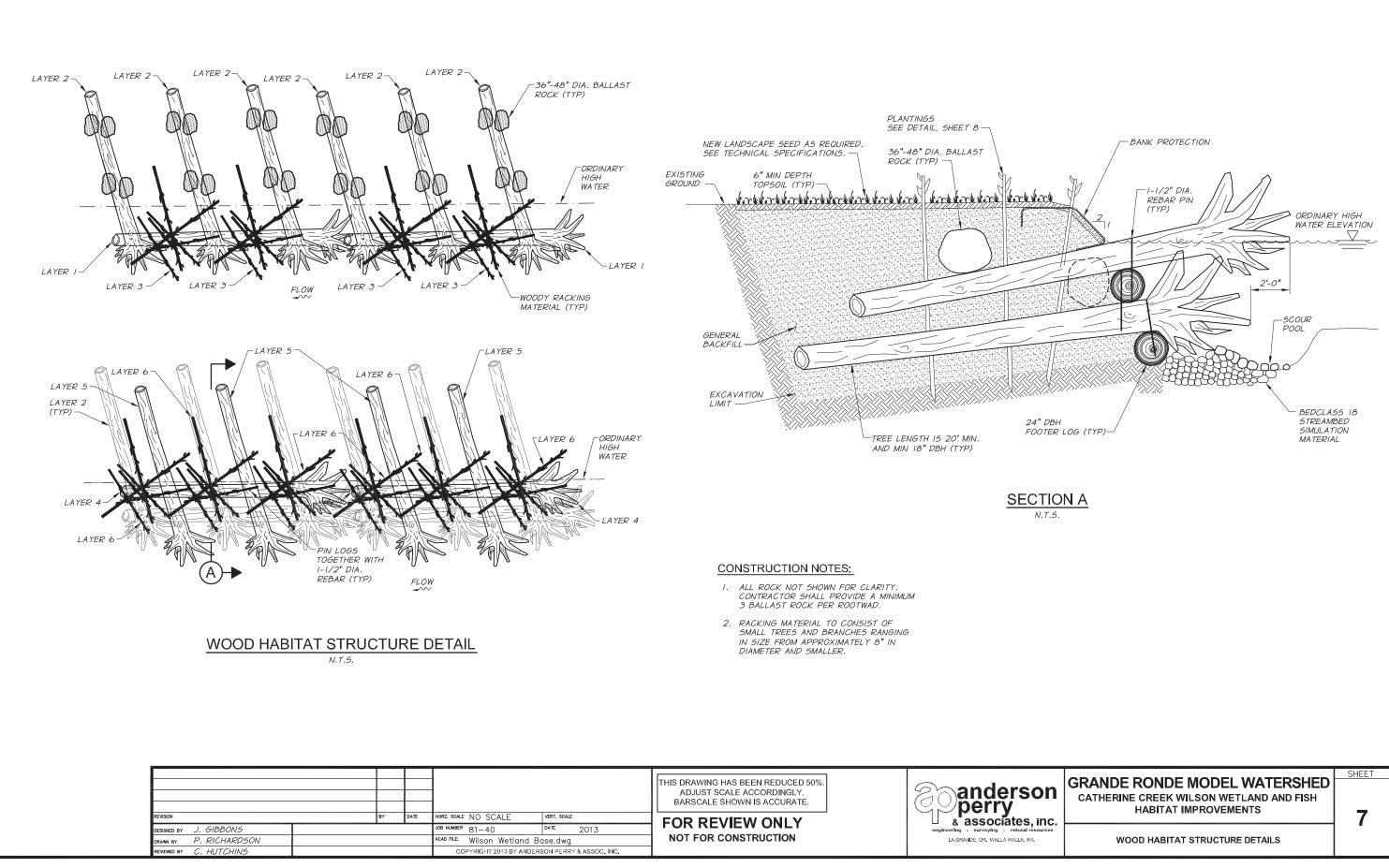
- I. ENHANCE AND CREATE WETLAND AREAS IN THIS REACH OF CATHERINE CREEK BY LOWERING THE EXISTING LEVEE TO APPROXIMATELY THE OHW ELEVATION AND SETTING A NEW LEVEE BACK AWAY FROM THE CREEK TO INCREASE THE ACREAGE THAT IS WATERED BY THE CREEK ON A MORE FREQUENT BASIS.
- 2. CREATE ADDITIONAL FISH HABITAT ALONG THE OXBOW AREA BY ALLOWING FLOW AT APPROXIMATELY THE OHW LEVEL TO ACCESS THE OXBOW AND BY PLACING LARGE WOODY DEBRIS STRUCTURES IN THE OXBOW.

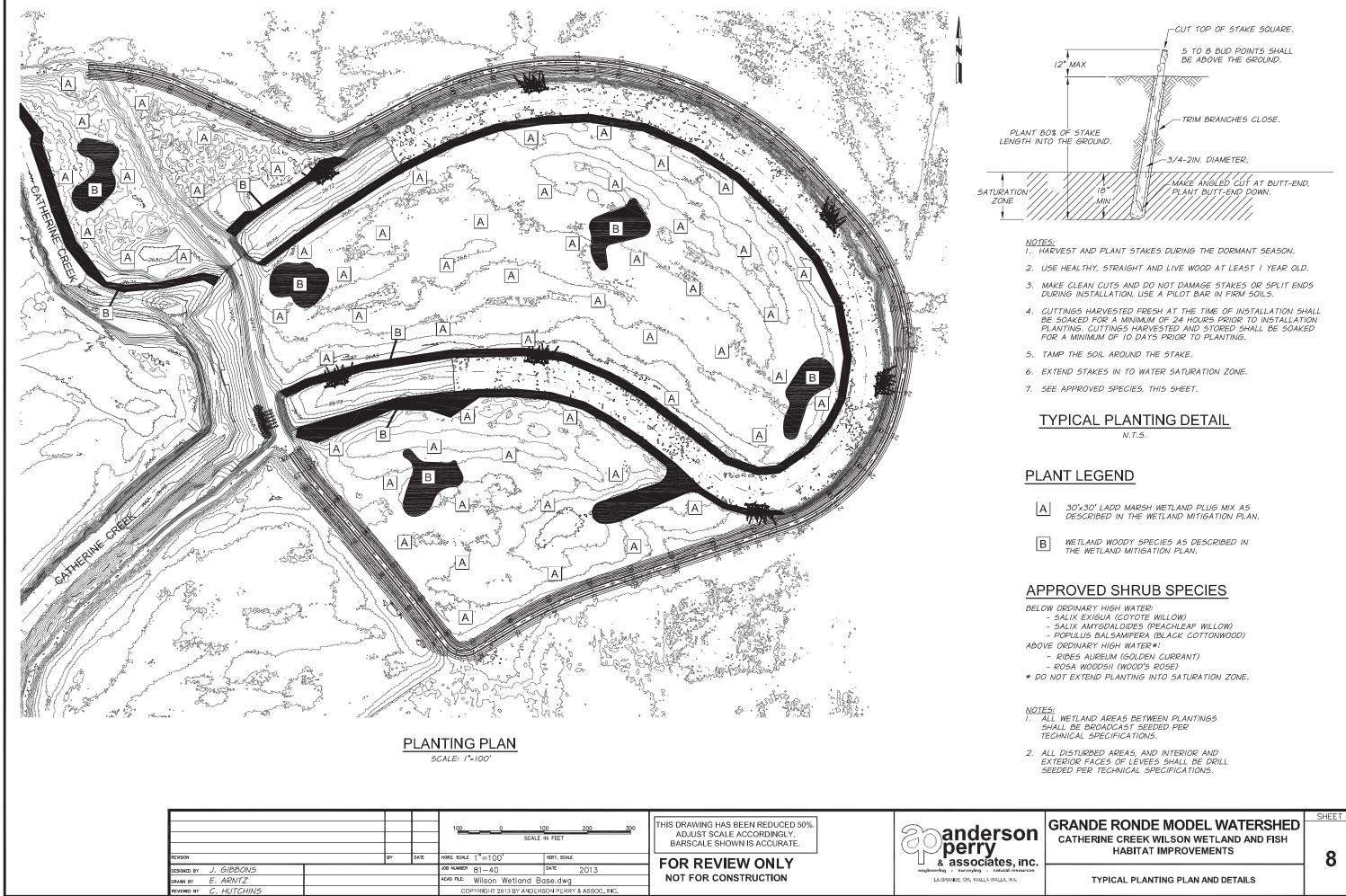

CONSTRUCTION NOTE:


ALL MATERIAL GENERATED ON SITE SHALL BE SPOILED IN ADJACENT LANDOWNERS FIELD. IT IS NOT ANTICIPATED THAT ANY MATERIAL BE EXPORTED FROM THE SITE.


GRANDE RONDE MODEL WATERSHED CATHERINE CREEK WILSON WETLAND AND FISH HABITAT IMPROVEMENTS SHEET


PROPOSED LEVEE PLAN


2



APPENDIX D

Draft Stream Functional Analysis: Boardman to Hemingway Transmission Line Project

Draft Stream Functional Analysis

Boardman to Hemingway Transmission Line Project

Prepared by:

1221 West Idaho Street Boise, Idaho 83702

January 2013

TABLE OF CONTENTS

1.0	Introd	uction	1
1.1	Pur	pose	1
2.0	Functi	ional Assessment	2
2.1	Met	hodology	3
2	.1.1	Functional Attribute Assessment	3
2	.1.2	Project Functional Attribute Assessment	3
2	.1.3	Project Functional Assessment	4
3.0	Concl	usion	7
3.1	Hyd	Irologic functions	7
3.2	Geo	omorphic functions	7
3.3	Biol	ogical functions	7
3.4	Che	emical and nutrient functions	7
4.0	Refere	ences	7

TABLE OF CONTENTS

Potential Permanent Impacts to Streams in the Project Area	1
Attributes and Functions They Represent	2
Attribute Assessment Methods	3
Project Functional Attribute Assessment by 4 th Field Watershed	5
Functional Assessment: Impacted Waters per Watershed	6
	Attributes and Functions They Represent Attribute Assessment Methods Project Functional Attribute Assessment by 4 th Field Watershed

ATTACHMENTS

Attachment A: Functional Attribute Assessment For Impacted Streams

1.0 INTRODUCTION

Idaho Power Company (IPC) is proposing to construct and operate approximately 281 miles of new transmission line known as the Boardman to Hemingway Transmission Line Project (Project). The Project would include a 500-kilovolt (kV) single circuit line, and a rebuild of an existing 138-kV and 69-kV double circuit lines between Boardman, Oregon, and the Hemingway Substation (located approximately 30 miles southwest of Boise, Idaho). Construction of the Project will result in unavoidable impacts to waters of the state. A stream functional assessment was conducted to assist in determining Compensatory Non-Wetland Mitigation (CNWM). This document discusses the approach and methodologies of the stream functional assessment.

Based on field delineations in 2011 and 2012, there are 212 non-wetland water features in the Project area. Of the 212 non-wetland water features only 25 will have permanent impacts. The Project is anticipated to permanently impact 0.392 acres of jurisdictional non-wetland waters. This impact acreage includes impacts to delineated non-wetland waters; an estimate for lands where access was limited; and a contingency of 25 percent to account for unanticipated impacts. Table 1.1 provides a summary of potential permanent impacts to perennial and intermittent streams.

County	Potential estimated intermittent stream impacts (ac)	Potential estimated perennial stream impacts (ac)
Morrow	0	0
Umatilla	0.007	0
Union	0.035	0.018
Baker	0.023	0.005
Malheur	0.088	0.060
Subtotal	0.154	0.083
Grand Total	0.23	6 *
Estimated Project Total	0.39	2**

Table 1.1.	Potential Permanent Impacts to Streams in	the Project Area
------------	---	------------------

*- Grand Total reflects on lands where access was permitted.

** - Grand Total extrapolated to include lands where there is no access plus a 25% contingency

1.1 Purpose

Rules regulating stream functional assessment are provided in Oregon Administrative Rule (OAR) 141-085-0765 (3): CNWM Functional Assessment (ODSL 2012a).

This OAR provides that an assessment should provide a detailed rationale based upon direct measurement or observation of the indicators for the following functional categories:

Hydrologic functions: includes the variable transfer and storage of water among the stream channel, its floodplain, and associated alluvial aquifer.

Geomorphic functions: encompasses hydraulic and sediment transport processes that generate variable forces within the channel and the variable input, transfer and storage of sediment within the channel and adjacent environs that are generally responsible for channel form.

Biological functions: includes processes that result in maintenance and change in biodiversity, trophic structure, habitat, and in some instances, variability in channel form.

Chemical and nutrient functions: encompasses processes that govern the cycling, transfer, and regulation of nutrients and chemicals in surface and groundwater, and between the stream channel and associated riparian system.

2.0 FUNCTIONAL ASSESSMENT

Based on the Guidance for Assessing Stream Function and Values under the Oregon Removal Fill Program (ODSL 2012b), the four functional categories discussed above to assess stream functions are represented in table 2.1. These four categories are broken down by stream functions. Further the table displays functional attributes, which represent specific features of a function. Functional attributes may indicate which particular function is active.

Function Attribute	Base Flow	Overbank Flow	Groundwater Flux	Bed Mobility	Sediment Characteristic	Bank Stability	Hydraulic Variability	Stream Habitat	Riparian Species Structure and Composition	Aquatic Species Structure and	Water Quality	Water Temperature
Hydrologic Fun	ctions											
Surface Water Storage	Х	Х							х			
Sub/surface Transfer			X						Х			
Flow variation	Х	X	х						Х			
Geomorphic Fu	unctions											
Sediment Continuity		X		X		x						
Substrate Mobility		Х		Х	x		Х					
Biological Func	tions	_										
Maintain Biodiversity									Х	Х		
Create Habitat	х	Х		Х	Х	Х	Х	Х	Х	Х		
Sustain Trophic structure									Х	х	Х	
Chemical and r	nutrient f	unction	S									
Nutrient Cycling		Х							Х		Х	
Chemical regulation			Х								Х	
Thermal regulation	Х								Х			Х

Table 2.1. Attributes and Functions They Represent

2.1 Methodology

Of the 25 streams that will have unavoidable permanent impacts, one stream from each 4-Field HUC watershed crossed by the project was assessed (Table 2.3). The stream chosen for assessment exhibited the high level of function and/or the highest number of impacts.

2.1.1 Functional Attribute Assessment

Each function attribute displayed in Table 2.2 was given a rating based on literature from EPA's Draft Function Assessment Framework (USEPA 2012). Functional attributes were assessed at patch scale for this draft, since the area affected by the Project will be small than a reach or a stream segment. A patch is defined as segment of stream with consistent character (USEPA 2012). Assessment of a particular attribute was qualified by best professional judgment and field observations.

Assessment Methods Field Biologists utilized the OSDAM method to determine the flow of a water feature is EPHEMERAL, INTERMITTENT, or PERENNIAL. Field Biologists used indicators such as debris lines, water inundation
Field Biologists used indicators such as debris lines, water inundation
marks, presence of algal mats, and vegetation patterns to determine whether overbank inundation is PRESENT or ABSENT.
ТВД
Field biologists observed if there are structures or channel incision that may be negatively impacting bed mobility. Based on observations the result would be BELOW, AT, or ABOVE NORMAL determination
Field biologists described bed material in terms of SILT, SAND, GRAVEL, COBBLE.
Field biologists assessed banks based on erosion due from cattle, sloughing, high flows. Bank stability is characterized by YES and NO.
Field biologists observed the presence of pools, runs, riffles, varying depths and velocities of flowing water. This is qualified by PRESENT or ABSENT
Based on different variables from field observations and OSDAM as well as field observations a rating of GOOD, FAIR or POOR was selected.
Field biologists assessed riparian communities based on successional character, species, and non-natives resulting in an output of GOOD, FAIR, or POOR.
Based on different variables from field observations and OSDAM a rating of GOOD, FAIR or POOR was selected.
Field biologists look to see if water quality was GOOD, FAIR, POOR by presence of sheen, oily film, and murky water.
Streams were defined as COLD WATER, COOL WATER, WARM WATER

Table 2.2. Attribute Assessment Methods

USEPA 2012

2.1.2 Project Functional Attribute Assessment

One stream per 4th Field HUC was assessed (see Table 2.3). The stream to represent the watershed was selected based on the functional attributes and/or if it had the highest acreage of

impact. This is a work and progress and at this time only a few features have had a complete assessment. Table 2.3 displays the Project's Functional Attribute Assessment. See Appendix A for the functional attribute assessment for all streams that may be permanently impacted by the Project

2.1.3 Project Functional Assessment

Data from the functional attribute assessment was used to determine the functions of the stream. Functions are rated with a (+) for positive function, a (-) for negative function and a (~) for streams with neither a positive nor a negative function. Table 2.4 displays the Projects functional assessment based on the four categories and their functions.

Function Attribute	Ba	se Flow	Over bank Flow	Groundwater Influx	Bed Mobility	Sediment Character	Bank Stability	Hydraulic Variability	Stream habitat	Riparian Structure and Composition	Aquatic Species Structure and comp	Water Quality	Water Temperature
4Level HUC	PERENNIAL	INTERMITTENT	PRESENT or ABSENT	TBD	BELOW, AT ABOVE NORMAL	SILT, SAND, GRAVEL, COBBLE	YES or NO	PRESENT or ABSENT	GOOD, FAIR, or POOR	GOOD, FAIR, or POOR	GOOD, FAIR, or POOR	GOOD, FAIR, or POOR	COLD, COOL, WARM
Umatilla													
UM_G_31		Х	Absent	TBD	Below - road present	Silt	No	Vegetation present	Poor	Poor	Poor	NA	N A
Upper Grand Ronde River													
UN_G_58		Х		TBD									
UN_G_73 - Little Rock Creek	х			TBD							Yes - fish bearing		
Powder River													
UN_G_141 - Clover Creek		Х		TBD	at normal								
Burnt River													
BA12_1512		Х		TBD									
BA_G_203 - Goodman Creek	Х		Absent	TBD	Below	Gravel, cobble	Yes	Present	Yes	Poor	YES	Good	Cold
Brownlee Reservoir													
BA12_1542 - Chicken Creek		Х		TBD									
Willow													
MA_G_110 - South Fork Little Willow Creek		Х	Present	TBD	at Normal	Cobble	Yes	Present	Poor	Poor	Poor	Good	Cold
Bully													
MA_G_127 - Cottonwood Creek	х			TBD	below								
Lower Malheur													
MA_G_293		Х		TBD	below								

Table 2.3.Project Functional Attribute Assessment by 4th Field Watershed

TBD – Not enough information at this time

Project Wetland Code	UM_G_31	UN_G_58	UN_G_73	UN_G_141	BA12_1512	BA_G_203	BA12_1542	MA_G_110	MA_G_127	MA_G_293
4 th Field HUC	Umatilla	Upper Grande	Ronde River	Powder River	Burnt	River	Brownlee Reservoir	Willow	Bully	Lower Malheur
Function	Intermittent	Intermittent	Perennial	Intermittent	Intermittent	Perennial	Intermittent	Intermittent	Perennial	Intermittent
Hydrologic Functions										
Surface Water Storage										
Sub/surface Transfer										
Flow variation										
Geomorphic Functions										
Sediment Continuity										
Substrate Mobility										
Biological Functions										
Maintain Biodiversity										
Create Habitat										
Sustain Trophic structure										
Chemical and nutrient fu	inctions									
Nutrient Cycling										
Chemical regulation										
Thermal regulation										

ned
hed

KEY:

- Negative Function

+ Positive Function

~ Neutral Function

3.0 CONCLUSION

Streams that may have permanent removal fill impacts are predominantly small intermittent streams, but do include three perennial streams. None of the streams are fish-bearing. Pending availability of data with which to complete the stream functional assessment, preliminary qualitative analysis indicates that the functionality that will be provided by proposed non-wetland mitigation will surpass the functions that will be impacted.

3.1 Hydrologic functions

Affected streams have small surface storage capacity and limited transfer of surface to subsurface water. Individual impacts to streams will have little if any effect on these functions; nor will it affect flow variation. By virtue of its size the proposed mitigation will have substantially more surface storage capacity, and provide more opportunity for transfer of surface to subsurface water. The mitigation will restore flow variation on the mitigation site.

3.2 Geomorphic functions

Impacts proposed at the individual crossings will have little if any effect on sediment continuity and substrate mobility. Crossings are designed to maintain these characteristics. The mitigation site will provide functionality of capturing sediments due to its low gradient, position low in the watershed, and off-channel location.

3.3 Biological functions

Crossings will have small effects on biodiversity, habitat characteristics and trophic structure. The mitigation site will provide habitat for a higher number of species than use the affected stream crossings, because of its size and position in the landscape. It will provide habitat for listed fish species.

3.4 Chemical and nutrient functions

Due to their relatively small size and short duration, the affected streams have limited nutrienct cycling capability. The size of the mitigation site and relatively slow change in flows and surface elevations will provide more opportunity for chemical and nutrient cycling. The mitigation site will be planted with species that will shade the water surface. Most of the affected streams have little shade on them; consequently the mitigation site will provide better thermal regulation than is available on the impact sites.

4.0 REFERENCES

ODSL. 2012a. Oregon State Archives. Oregon Administrative Rules. Division 85. Administrative Rules Governing the Issuance and Enforcement of Removal-Fill Authorizations within Waters of Oregon Including Wetlands. Available at: http://arcweb.sos.state.or.us/pages/rules/oars_100/oar_141/141_085.html

ODSL. 2012b. Guidance for Assessing Stream Function and Values under the Oregon Removal Fill Program. Available on at http://www.oregon.gov/dsl/PERMITS/docs/Interim_Guidance_Stream_Mitigation_11212 012.pdf USEPA 2012. Draft Functional Assessment Framework Excerpt. Attributes, Considerations, Criteria. U.S. Environmental Protection Agency, Region 10, Portland, OR. Prepared for the EPA by Skidmore Restoration Consulting and Inter-fluve.

APPENDIX A: Functional Attribute Assessment for Impacted Streams

Geographic No.	Mile Post	HUC (4th level)	Width (meters)	Impact (ac)	Perennial	Intermittent	Over bank Flow	Groundwater Influx	Bed Mobility	Sediment Characteristic	Bank Stability	Hydraulic Variability	Stream habitat	Riparian Structure and composition	Aquatic Species Structure and comp	Water Quality	Water Temperature
Umatilla																	
UM_G_31	63.7	Umatilla	1.5	0.003		х	Absent	TBD	Below - road present	Silt	No	Vegetation present	Poor	Poor	Poor	NA	N A
UM_G_110	64	Umatilla	3	0.002		х	Absent	TBD	Below - road present	Silt Gravel	NO	absent		Poor	Poor	NA	NA
UM_G_104	95.2	Umatilla	TBD	0.002		Х	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Union									-								
UN_G_58	111.4	Upper Grand Ronde River	TBD	0.005		х	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
UN_G_73 - Little Rock Creek	TBD	Upper Grand Ronde River	TBD	0.01	х		TBD	TBD		TBD	TBD	TBD	TBD	TBD	Yes - fish bearing	TBD	TBD
UN12_1273	114	Upper Grand Ronde River	TBD	0.004		х	TBD	TBD	Below - road present	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
UN_G_75 - Rock Creek	TBD	Upper Grand Ronde River	TBD	0.008	x		TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	Yes - fish bearing	TBD	TBD
UN_G_130 - Clover Creek	126	Powder River	TBD	0.003		х	TBD	TBD	Below - road present	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
UN_G_131 - Clover Creek	126.58	Powder River	TBD	0.005		х	TBD	TBD	Below - road present	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
UN12_1365	127.2	Powder River	TBD	0.01		Х	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
UN_G_141 - Clover Creek	128	Powder River	TBD	0.008		Х	TBD	TBD	at normal	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Baker																	
BA12_1512	180.5	Burnt River	TBD	0.02		х	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD

Table A.1. Project Functional Attribute Assessment by 4th Field Watershed for All Permanently Impacted Strea

BA_G_203 - Goodman Creek	195.4	Burnt River	5	0.002	Х		Absent	TBD	Below	Gravel, cobble	Yes	Present	Yes	Poor	YES	Good	TBD
BApro_341 - Jordan Creek	TBD	Burnt River	TBD	0.003	Х		TBD	TBD	below	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MalWllwCrk_375	TBD	Brownlee Reservoir	TBD	0.005		Х	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
BA12_1542 - Chicken Creek	TBD	Brownlee Reservoir	TBD	0.003		Х	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Malheur																	
MA_G_3c - Phipps Creek	206.8	Willow	TBD	0.003		Х	TBD	TBD	Below	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MA_G_3b - Phipps Creek	206.8	Willow	TBD	0.003		Х	TBD	TBD	Below	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MA_G_3a - Phipps Creek	206.8	Willow	TBD	0.003		Х	TBD	TBD	Below	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MA_G_7 - West Fork Phipps Creek	207.8	Willow	1	0.001		Х	TBD	TBD	below	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MA_G_23 - Becker Creek	211.8	Willow	TBD	0.003		Х	TBD	TBD	at Normal	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MA_G_103 - North Fork Little Willow Creek	225.9	Willow	1	0.004		Х	TBD	TBD	at Normal	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MA_G_110 - South Fork Little Willow Creek	227	Willow	1	0.004		х	Present	TBD	at Normal	Cobble	Yes	Present	Poor	Poor	Poor	Good	Cold
MA_G_127 - Cottonwood Creek	233.7	Bully	TBD	0.06	х		TBD	TBD	below	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
MA_G_293	TBD	Lower Malheur	TBD	0.06		x	TBD	TBD	below	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD

OSDAM

TBD

NA Not applicable - No water at the time of observation

Not enough information at this time

APPENDIX E

Property Lease

This will be provided as part of the final JPA.

1 Attachment S, Mitigation Location Information

- 2 **Compensatory Wetland Mitigation Site Location Information**
- **3** Potential Mitigation Site 1
- 4 Street, Road or other descriptive location:
- 5 0.5 mile north of Market Lane, 0.75 mile west of the intersection of Hamilton Road and
- 6 Market Lane; or 1 mile east of the intersection of Ruckman Road, approximately 10 miles 7 east-northeast from La Grande, Union County, Oregon.
- / east-northeast from La Grande, Union County, Ore
- 8 Quarter/Quarter Section: BD, CA
- 9 Section: 14
- 10 Township: 2 South
- 11 Range: 39 East
- 1213 In or near (city or town): La Grande
- 14 County: Union
- 15 Tax Map #: 02S39E
- 16 Tax Lot #: 5800
- 17 Wetland/Waterway (pick one): Waterway (Catherine Creek)
- 18 River Mile:
- 19 Lattitude: 43.393
- 20 Longitude: -117.908
- 21 Waterway/Watershed/HUC
- 22

23 BLOCK 6 ADDITIONAL INFORMATION

24 Attachment T, Names and Addresses of Property Owners

- Property owner information for each removal-fill site and all associated mitigation sites will be provided in Exhibit F of the ASC.
- 27 BLOCK 7 CITY/COUNTY PLANNING DEPARTMENT AFFIDAVIT
- 28 **City/County Planning Department Affidavits**
- 29 Not applicable.
- 30 BLOCK 8 COASTAL ZONE CERTIFICATION
- 31 Not applicable.
- 32 BLOCK 9 SIGNATURES FOR JOINT APPLICATION

33 Attachment U, Signatures

- 34 Applicant signature will be provided on the final JPA.
- 35 Property owner information for each removal-fill site and all associated mitigation sites will be
- 36 provided in Exhibit F of the ASC.